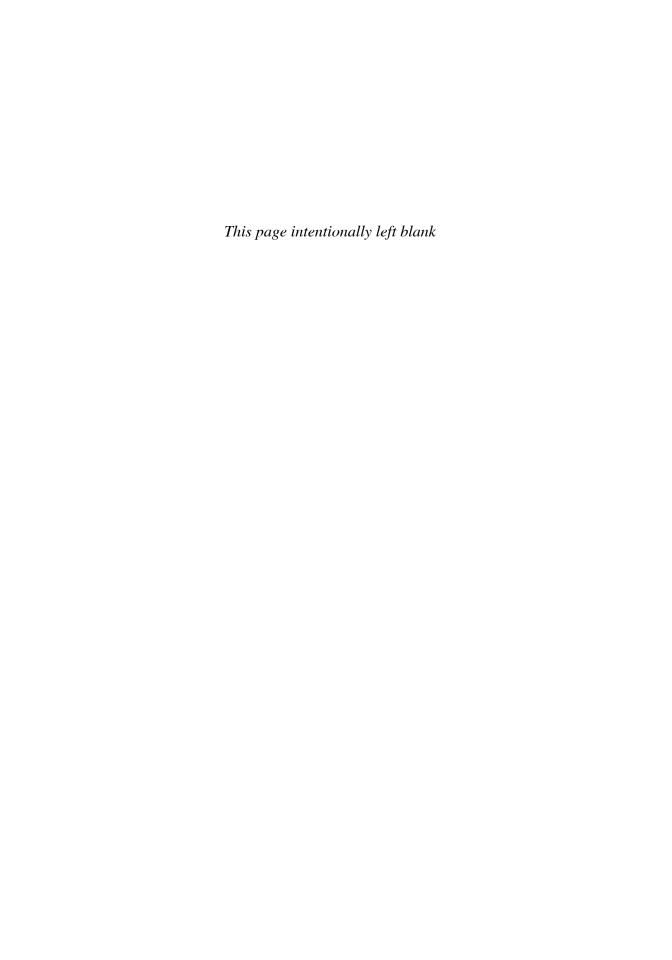
Mathematical Surveys and Monographs

Volume 9

## Linear Approximation

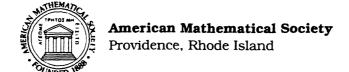

**Arthur Sard** 



**American Mathematical Society** 

## Other Titles in This Series

- 45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996
- 44 J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, 1996
- 43 James E. Humphreys, Conjugacy classes in semisimple algebraic groups, 1995
- 42 Ralph Freese, Jaroslav Ježek, and J. B. Nation, Free lattices, 1995
- 41 Hal L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, 1995
- 40.2 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 2, 1995
- 40.1 Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, number 1, 1994
- 39 Sigurdur Helgason, Geometric analysis on symmetric spaces, 1993
- 38 Guy David and Stephen Semmes, Analysis of and on uniformly rectifiable sets, 1993
- 37 Leonard Lewin, Editor, Structural properties of polylogarithms, 1991
- 36 John B. Conway, The theory of subnormal operators, 1991
- 35 Shreeram S. Abhyankar, Algebraic geometry for scientists and engineers, 1990
- 34 Victor Isakov, Inverse source problems, 1990
- 33 Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, 1990
- 32 Howard Jacobowitz, An introduction to CR structures, 1990
- 31 Paul J. Sally, Jr. and David A. Vogan, Jr., Editors, Representation theory and harmonic analysis on semisimple Lie groups, 1989
- 30 Thomas W. Cusick and Mary E. Flahive, The Markoff and Lagrange spectra, 1989
- 29 Alan L. T. Paterson, Amenability, 1988
- 28 Richard Beals, Percy Deift, and Carlos Tomei, Direct and inverse scattering on the line, 1988
- 27 Nathan J. Fine, Basic hypergeometric series and applications, 1988
- 26 Hari Bercovici, Operator theory and arithmetic in  $H^{\infty}$ , 1988
- 25 Jack K. Hale, Asymptotic behavior of dissipative systems, 1988
- 24 Lance W. Small, Editor, Noetherian rings and their applications, 1987
- 23 E. H. Rothe, Introduction to various aspects of degree theory in Banach spaces, 1986
- 22 Michael E. Taylor, Noncommutative harmonic analysis, 1986
- 21 Albert Baernstein, David Drasin, Peter Duren, and Albert Marden, Editors, The Bieberbach conjecture: Proceedings of the symposium on the occasion of the proof, 1986
- 20 Kenneth R. Goodearl, Partially ordered abelian groups with interpolation, 1986
- 19 Gregory V. Chudnovsky, Contributions to the theory of transcendental numbers, 1984
- 18 Frank B. Knight, Essentials of Brownian motion and diffusion, 1981
- 17 Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, 1980
- 16 O. Timothy O'Meara, Symplectic groups, 1978
- 15 J. Diestel and J. J. Uhl, Jr., Vector measures, 1977
- 14 V. Guillemin and S. Sternberg, Geometric asymptotics, 1977
- 13 C. Pearcy, Editor, Topics in operator theory, 1974




# MATHEMATICAL Surveys and Monographs

Volume 9

## Linear Approximation

**Arthur Sard** 



The writing of this book was supported in part by the Aeronautical Research Laboratories and the Office of Scientific Research, both of the United States Air Force.

Library of Congress Catalog Number: 63-11988 International Standard Book Number 0-8218-1509-1 International Standard Serial Number 0076-5376

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© Copyright 1963 by the American Mathematical Society. All rights reserved.

Printed in the United States of America.

Reprinted with corrections, 1982

The American Mathematical Society retains all rights except those granted to the United States Government.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Printed on recycled paper.

10 9 8 7 6 5 4 01 00 99 98 97 96

### Preface

The form in which I have written "Linear approximation" seems to me to be suited to the subject, and to the use of mathematicians, scientists, and engineers.

Readers interested in the applications may wish to start with the illustrative examples and the statements of theorems. All readers are urged to skip boldly and to sample where they will.

I am grateful to my wife and to many men and women for help and teaching. In the words of David, Psalm 16, 6,

ילים נפלו לי בנעימים אף נחלת שפרה עליי

The lines are fallen unto me in pleasant places; yea, I have a goodly heritage.

ARTHUR SARD

July 21, 1962

QUEENS COLLEGE
THE CITY UNIVERSITY OF NEW YORK
FLUSHING, NEW YORK

### Second Preface

There has been much done since 1963. Rather than attempting a synopsis, I will list a number of my papers, in which detailed references are given to work of Atteia, Barnhill, DeBoor and Lynch, Delvos, M. Golomb and Weinberger, Holladay, Schempp, Schoenberg, Walsh, Ahlberg and Nilson, myself, and others.

The "special formulas" of Chapter 2 are now called "natural splines" or "minimizing splines". The open question discussed on page 107 has been resolved affirmatively: The natural splines are the best broad formulas. See references [3] and [9] of the Supplementary Bibliography. Furthermore, the best formulas of Parts 1, 3, and 4 of Chapter 2 are derivable from Part 2, since the best approximation of Gx is Gy, where y is the natural spline approximation of x and x and x are derivable operator. The direct calculation of x and x however, be easier than that of x.

Papers [1] and [7] refer to Chapter 6; paper [6] refers to Chapter 9. I wish to thank Valerie Meyer for her great help.

ARTHUR SARD

August 15, 1980

BINNINGEN SWITZERLAND

## **Table of Contents**

| Introduction                                                            |      |   | • | 1   |
|-------------------------------------------------------------------------|------|---|---|-----|
| Functionals                                                             |      | _ |   | 1   |
| General linear formulas                                                 |      |   |   | 5   |
| The effect of error in input                                            |      |   | • | 7   |
| The use of probability                                                  |      |   |   | 8   |
| Efficient approximation                                                 |      |   |   | 9   |
| Minimal response to error. Variance                                     |      | • |   | 10  |
| Other topics                                                            |      | • |   | 10  |
| CHAPTER 1. FUNCTIONALS IN TERMS OF DERIVATIVES                          |      | • | • | 11  |
| The spaces $C_n$ , $C_n$ , $V$ of functions                             |      |   | _ | 11  |
| The space $\mathscr{C}_n^*$ of functionals                              |      | • |   | 13  |
| A standard form for elements of $\mathscr{C}_{n-1}^*$ .                 |      |   |   | 14  |
| Figure 1. Step functions and their integrals.                           |      |   |   | 16  |
| Inequalities                                                            |      |   |   | 19  |
| Symmetry and skew symmetry                                              |      |   |   | 23  |
| Functionals that vanish for degree $n-1$ .                              |      | • |   | 25  |
| _1                                                                      |      |   |   | 0.0 |
| An approximation of $\int_{-1}^{1} x(s) ds$                             | •    | • | • | 26  |
| An approximation of $\int_{0}^{1} x(s) ds / \sqrt{s}$ .                 |      | • | • | 31  |
| An approximation of the derivative $x_1(s)$ at $s = 1$                  | 4.   |   |   | 31  |
| Linear interpolation                                                    | _    | _ |   | 32  |
| A theorem on convex families of functions .                             |      | • |   | 33  |
|                                                                         |      |   |   |     |
| Chapter 2. Applications                                                 |      | • | • | 36  |
| Part 1. Integrals                                                       |      |   | • | 36  |
| Introduction. Best formulas                                             |      |   | • | 36  |
| The approximation of $\int_0^m x$ by $c_0x(0) + \cdots + c_mx(0)$       | m)   | • |   | 51  |
| Best and nearly best integration formulas .                             |      |   |   | 53  |
| Derivation of the formulas                                              |      |   | • | 61  |
| m even                                                                  |      |   |   | 65  |
| $m 	ext{ odd } . \qquad . \qquad . \qquad . \qquad . \qquad . \qquad .$ |      |   |   | 71  |
| A formula of Gaussian type involving two ordinat                        | es . |   |   | 74  |
| Approximations of Gaussian type                                         |      |   | • | 80  |
| Approximations that involve derivatives                                 |      |   | • | 81  |
| Stepwise solution of differential equations .                           | •    |   |   | 82  |

| Part 2. Values of functions                    |             |          |        |        |        |            | . 84  |
|------------------------------------------------|-------------|----------|--------|--------|--------|------------|-------|
| Conventional interpolation                     | with dis    | tinct a  | rgum   | ents   | _      |            | . 84  |
| Conventional interpolation                     |             |          |        |        |        | -<br>nents |       |
| Interpolation                                  | WIUII WU    | riiose 4 | COM    | naciio | ar gui | IZOII OO   | . 90  |
| Special formulas and best                      | narrow f    | ormule   | •      | •      | •      | •          | . 93  |
| Broad interpolation .                          | IIaIIUW I   | Ormune   | 10     | •      | •      | •          | . 104 |
| Interpolations that use de                     |             | •        | •      | •      | •      | •          | . 104 |
| <del>-</del>                                   | rivatives   | •        | •      | •      | •      | •          |       |
| Part 3. Derivatives                            |             | •        | •      | •      | •      | •          | . 111 |
| Conventional approximate                       | different   | iation   |        | •      | •      | •          | . 111 |
| Best formulas                                  | •           | •        | •      | •      | •      | •          | . 111 |
| Part 4. Sums                                   | •           | •        | •      |        | •      |            | . 116 |
| An instance                                    | •           | •        |        |        |        |            | . 116 |
| Chapter 3. Linear continue                     | ous func    | TIONA    | LS ON  | $C_n$  |        |            | . 118 |
| Normed linear spaces .                         |             |          |        |        |        |            | . 118 |
| Additive operators .                           |             |          | _      |        | _      | _          | . 122 |
| The adjoint space                              | •           |          |        | _      |        |            | . 125 |
| Riesz's Theorem                                | _           |          |        |        |        | •          | . 127 |
| The space $C_n^*$                              | •           | •        | •      | •      | •      | •          | . 138 |
| An illustration $\cdot$ .                      | •           | •        | •      | •      | •      | •          | . 144 |
| The spaces $Z$ and $Z^*$                       | •           | •        | •      | •      | •      | •          | . 145 |
| Taylor operators                               | •           | •        | •      | •      | •      | •          | . 151 |
| The operator $\delta$                          | •           | •        | •      | •      | •      | •          | . 154 |
| The spaces $B_n$ and $K_n$ .                   | •           | •        | •      | •      | •      | •          | . 155 |
| -                                              |             |          | •      | •      | •      | •          |       |
| Chapter 4. Functionals in                      | TERMS OF    | PART     | IAL DI | ERIVA' | rives  |            | . 160 |
| The space $B_{p,q}$                            | •           | •        | •      | •      | •      | •          | . 160 |
| Taylor's formula                               | •           | •        | •      | •      | •      | •          | . 162 |
| The spaces $\mathscr{K}_{p,q}^*$ and $B_{p,q}$ | •           | •        | •      | •      | •      | •          | . 170 |
| The spaces $B$                                 | •           | •        | •      | •      | •      | •          | . 181 |
| The spaces $\mathscr{K}^*$ and $B$ .           | •           | •        | •      | •      | •      | •          | . 194 |
| Symmetry                                       | •           | •        | •      | •      | •      | •          | . 202 |
| Appraisals                                     | •           | •        | •      | •      | •      | •          | . 203 |
| Figures and tables .                           | •           | •        | •      | •      | •      | •          | . 206 |
| CHAPTER 5. APPLICATIONS .                      | •           | •        |        |        |        |            | . 214 |
| Approximation of an integr                     | ral in tern | as of it | s inte | grand  | at the | cente      | er    |
| of mass                                        |             | •        |        | •      | •      | •          | . 214 |
| Circular domain of integra                     | tion        |          |        |        | •      |            | . 221 |
| Use of several values of th                    | e integra   | nd       | •      |        |        | •          | . 224 |
| Use of derivatives of the in                   | _           |          |        |        |        |            | . 226 |
| A functional not in $\mathcal{K}^*$ un         |             |          |        |        |        | •          | . 229 |
| Circular domain and partic                     |             | _        |        | •      |        | •          | . 230 |
| An interpolation                               | •           |          |        |        |        | •          | . 232 |
| Double linear interpolation                    | ı.          |          | •      |        |        | •          | . 232 |
| An approximate differentia                     |             | •        | •      | •      |        | •          | . 233 |

| CHAPTER 6. LINEAR O                              | ONTIN         | uous      | FUNC   | TIONA  | LS ON  | B, Z    | , <i>K</i> |        |    | 240 |
|--------------------------------------------------|---------------|-----------|--------|--------|--------|---------|------------|--------|----|-----|
| <b>(70)</b>                                      |               |           |        |        |        | •       | •          |        |    | 240 |
| Riesz's Theorem                                  |               |           |        |        |        |         |            |        |    | 242 |
| The space $B^*$                                  |               |           |        |        |        |         |            |        |    | 246 |
| The space #                                      |               |           |        |        |        |         |            |        |    | 249 |
| _                                                |               |           |        |        |        |         |            |        |    | 252 |
| The operators $\delta_s$ a                       |               |           |        |        |        |         |            |        |    | 256 |
| The spaces $Z$ and                               |               |           |        |        |        |         |            | -      |    | 256 |
|                                                  |               | •         |        |        |        |         |            |        |    | 262 |
| The norm in $K$                                  |               |           |        |        |        |         |            | •      |    | 265 |
|                                                  |               |           |        |        |        |         |            | •      | •  | 266 |
| $K^*$ as a subspace                              | of <i>B</i> * |           | •      | •      |        |         |            | •      | •  | 269 |
|                                                  | -             | •         |        | •      | •      | ·       | •          | •      |    |     |
| CHAPTER 7. FUNCTION                              | NS OF         | m vaf     | RIABLI | ES     |        |         |            |        |    | 271 |
| The space $B$ .                                  | •             |           | •      |        |        |         |            |        |    | 271 |
| The full core $\phi$                             |               |           |        |        | •      |         |            |        |    | 274 |
| The norm in $\overset{\prime}{B}$                |               |           |        |        |        |         |            | _      |    | 278 |
| Functions of boun                                |               |           |        |        |        |         |            |        |    | 279 |
| The space $B^*$                                  |               |           |        |        | •      |         |            |        |    | 279 |
| The space $\mathscr{B}^*$                        |               |           |        |        |        |         |            |        |    | 280 |
| The space $\mathscr{B}^*$ The spaces $Z$ and     | $Z^*$         |           |        | _      |        |         |            |        |    | 281 |
| The covered core                                 | _             |           |        |        |        |         |            |        |    | 281 |
| The retracted core                               | o and         | the s     | space  | K      |        |         |            |        |    | 284 |
| The norm in $K$                                  |               |           |        | •      |        |         |            |        |    | 286 |
| The space $K^*$                                  |               |           |        |        |        |         |            |        |    | 287 |
| The space $\mathscr{K}^*$                        |               |           |        |        | •      |         |            |        |    | 288 |
| The space $\mathcal{K}^*$ $K^*$ as a subspace of | of B*         |           | _      |        | •      |         |            |        |    | 289 |
| Illustration .                                   |               |           |        |        | •      |         | _          |        |    | 290 |
| Figures and tables                               |               |           |        |        |        |         |            |        | _  | 295 |
| Barrer arra amarra                               |               | -         | •      | •      | •      | •       | •          | •      | •  |     |
| CHAPTER 8. FACTORS                               | OF OP         | ERATO     | RS     |        |        |         |            |        |    | 300 |
| Banach spaces                                    |               |           |        |        |        |         |            |        |    | 301 |
| Baire's Theorem                                  |               |           |        |        |        |         |            |        |    | 303 |
| The inverse of a li                              |               |           |        |        |        | •       |            |        |    | 305 |
| The factor space A                               |               |           |        |        |        |         | •          |        |    | 308 |
| The quotient theor                               | rem           |           |        |        |        |         |            |        |    | 310 |
| Import thereof                                   |               |           |        | •      |        |         |            |        |    | 313 |
| An instance in wh                                | ich $U$       | $= D_s^n$ |        |        |        |         |            | •      |    | 314 |
| Related instances                                |               |           |        |        |        |         |            |        |    | 315 |
| U a linear homoge                                | neous         | differ    | ential | opera  | ator   |         | •          |        |    | 316 |
| Approximation of                                 |               |           |        |        |        | inear l | nomog      | geneou | 18 |     |
| differential equa                                |               | •         | •      |        |        |         |            | •      |    | 316 |
| A trigonometric a                                |               | matio     | n      |        |        |         |            |        |    | 322 |
| An instance in wh                                |               |           |        | fferen | се оре | rators  | 1          |        |    | 324 |