Editors

M. Artin S. S. Chern J. M. Fröhlich E. Heinz
H. Hironaka F. Hirzebruch L. Hörmander S. Mac Lane
W. Magnus C. C. Moore J. K. Moser M. Nagata
W. Schmidt D. S. Scott Ya. G. Sinai J. Tits
B. L. van der Waerden M. Waldschmidt S. Watanabe

Managing Editors

M. Berger B. Eckmann S. R. S. Varadhan
Grundlehren der mathematischen Wissenschaften

A Series of Comprehensive Studies in Mathematics

A Selection

180. Landkof: Foundations of Modern Potential Theory
181. Lions/Magenes: Non-Homogeneous Boundary Value Problems and Applications I
182. Lions/Magenes: Non-Homogeneous Boundary Value Problems and Applications II
183. Lions/Magenes: Non-Homogeneous Boundary Value Problems and Applications III
184. Rosenblatt: Markov Processes, Structure and Asymptotic Behavior
185. Rubinowicz: Sommerfeldsche Polynommethode
187. Siegel/Moser: Lectures on Celestial Mechanics
188. Warner: Harmonic Analysis on Semi-Simple Lie Groups I
189. Warner: Harmonic Analysis on Semi-Simple Lie Groups II
190. Faith: Algebra: Rings, Modules, and Categories I
191. Faith: Algebra II, Ring Theory
192. Mallcev: Algebraic Systems
193. Pólya/Szego: Problems and Theorems in Analysis I
194. Igusa: Theta Functions
195. Berberian: Baer*-Rings
196. Athreya/Ney: Branching Processes
197. Benz: Vorlesungen über Geometric der Algebren
198. Gaal: Linear Analysis and Representation Theory
199. Nitsche: Vorlesungen über Minimalflächen
200. Dold: Lectures on Algebraic Topology
201. Beck: Continuous Flows in the Plane
203. Schoeneberg: Elliptic Modular Functions
204. Popov: Hyperstability of Control Systems
205. Nikolskii: Approximation of Functions of Several Variables and Imbedding Theorems
206. André: Homologie des Algèbres Commutatives
207. Donoghue: Monotone Matrix Functions and Analytic Continuation
208. Lacey: The Isometric Theory of Classical Banach Spaces
209. Ringel: Map Color Theorem
211. Comfort/Negrepontis: The Theory of Ultrafilters
212. Switzer: Algebraic Topology—Homotopy and Homology
213. Shafarevich: Basic Algebraic Geometry
214. van der Waerden: Group Theory and Quantum Mechanics
215. Schaefer: Banach Lattices and Positive Operators
216. Pólya/Szegö: Problems and Theorems in Analysis II
217. Stenström: Rings of Quotients
218. Gihman/Skorohod: The Theory of Stochastic Process II
219. Duvant/Lions: Inequalities in Mechanics and Physics
220. Kirillov: Elements of the Theory of Representations
221. Mumford: Algebraic Geometry I: Complex Projective Varieties
222. Lang: Introduction to Modular Forms
223. Bergh/Löfström: Interpolation Spaces. An Introduction

Continued after Index
AMS Subject Classification: 14-XX

Library of Congress Cataloging in Publication Data
Main entry under title:
Geometry of algebraic curves.
(Grundlehren der mathematischen Wissenschaften; 267)
Bibliography: v. 1, p.
Includes index.
QA565.G46 1984 512'.33 84-5373

Originally published by Springer-Verlag New York Inc. in 1985
Softcover reprint of the hardcover 1st edition 1985
All rights reserved. No part of this book may be translated or reproduced in any form
without permission from Springer Science+Business Media, LLC.

9 8 7 6 5 4 3 2 1
DOI 10.1007/978-1-4757-5323-3
To the memory of Aldo Andreotti
Preface

In recent years there has been enormous activity in the theory of algebraic curves. Many long-standing problems have been solved using the general techniques developed in algebraic geometry during the 1950's and 1960's. Additionally, unexpected and deep connections between algebraic curves and differential equations have been uncovered, and these in turn shed light on other classical problems in curve theory. It seems fair to say that the theory of algebraic curves looks completely different now from how it appeared 15 years ago; in particular, our current state of knowledge represents a significant advance beyond the legacy left by the classical geometers such as Noether, Castelnuovo, Enriques, and Severi.

These books give a presentation of one of the central areas of this recent activity; namely, the study of linear series on both a fixed curve (Volume I) and on a variable curve (Volume II). Our goal is to give a comprehensive and self-contained account of the extrinsic geometry of algebraic curves, which in our opinion constitutes the main geometric core of the recent advances in curve theory. Along the way we shall, of course, discuss applications of the theory of linear series to a number of classical topics (e.g., the geometry of the Riemann theta divisor) as well as to some of the current research (e.g., the Kodaira dimension of the moduli space of curves).

A brief description of the contents of the various chapters is given in the Guide for the Reader. Here we remark that these volumes are written in the spirit of the classical treatises on the geometry of curves, such as Enriques–Chisini, rather than in the style of the theory of compact Riemann surfaces, or of the theory of algebraic functions of one variable. Of course, we hope that we have made our subject understandable and attractive to interested mathematicians who have studied, in whatever manner, the basics of curve theory and who have some familiarity with the terminology of modern algebraic geometry.

We now would like to say a few words about that material which is not included. Naturally, moduli of curves play an essential role in the geometry of algebraic curves, and we have attempted to give a useful and concrete discussion of those aspects of the theory of moduli that enter into our work. However, we do not give a general account of moduli of curves, and we say nothing about the theory of Teichmüller spaces. Secondly, it is obvious that
theory of abelian varieties and theta functions is closely intertwined with algebraic curve theory, and we have also tried to give a self-contained presentation of those aspects that are directly relevant to our work, there being no pretense to discuss the general theory of abelian varieties and theta functions. Thirdly, again the general theory of algebraic varieties clearly underlies this study; we have attempted to utilize the general methods in a concrete and practical manner, while having nothing to add to the theory beyond the satisfaction of seeing how it applies to specific geometric problems. Finally, arithmetical questions, as well as the recent beautiful connections between algebraic curves and differential equations including the ramifications with the Schottky problem, are not discussed.

These books are dedicated to Aldo Andreotti. He was a man of tremendous mathematical insight and personal wisdom, and it is fair to say that Andreotti’s view of our subject as it appears, for example, in his classic paper “On a theorem of Torelli,” set the tone for our view of the theory of algebraic curves. Moreover, his influence on the four of us, both individually and collectively, was enormous.

It is a pleasure to acknowledge the help we have received from numerous colleagues. Specifically, we would like to thank Corrado De Concini, David Eisenbud, Bill Fulton, Mark Green, Steve Kleiman, and Edoardo Sernesi for many valuable comments and suggestions. We would also like to express our appreciation to Roy Smith and Harsh Pittie, who organized a conference on Brill–Noether theory in February, 1979 at Athens, Georgia, the notes of which formed the earliest (and by now totally unrecognizable) version of this work.

Also, it is a pleasure to thank Steve Diaz, Ed Griffin, and Francesco Scattone for excellent proofreading.

Finally, our warmest appreciation goes to Laura Schlesinger, Carol Ferreira, and Kathy Jacques for skillfully typing the various successive versions of the manuscript.
Contents

Guide for the Reader xii
List of Symbols xv

CHAPTER I
Preliminaries 1
§1. Divisors and Line Bundles on Curves 1
§2. The Riemann–Roch and Duality Theorems 6
§3. Abel's Theorem 15
§4. Abelian Varieties and the Theta Function 20
§5. Poincaré's Formula and Riemann's Theorem 25
§6. A Few Words About Moduli 28
Bibliographical Notes 30
Exercises
 A. Elementary Exercises on Plane Curves 31
 B. Projections 35
 C. Ramification and Plücker Formulas 37
 D. Miscellaneous Exercises on Linear Systems 40
 E. Weierstrass Points 41
 F. Automorphisms 44
 G. Period Matrices 48
 H. Elementary Properties of Abelian Varieties 48

APPENDIX A
The Riemann–Roch Theorem, Hodge Theorem, and Adjoint Linear Systems 50
§1. Applications of the Discussion About Plane Curves with Nodes 56
§2. Adjoint Conditions in General 57

CHAPTER II
Determinantal Varieties 61
§1. Tangent Cones to Analytic Spaces 61
§2. Generic Determinantal Varieties: Geometric Description 67
§3. The Ideal of a Generic Determinantal Variety 70
§4. Determinantal Varieties and Porteous' Formula 83
 (i) Sylvester's Determinant 87
 (ii) The Top Chern Class of a Tensor Product 89
 (iii) Porteous' Formula 90
 (iv) What Has Been Proved 92
§5. A Few Applications and Examples 93
 Bibliographical Notes 100
 Exercises 100
 A. Symmetric Bilinear Maps 100
 B. Quadrics 102
 C. Applications of Porteous’ Formula 104
 D. Chern Numbers of Kernel Bundles 105

CHAPTER III
Introduction to Special Divisors 107
§1. Clifford’s Theorem and the General Position Theorem 107
§2. Castelnuovo’s Bound, Noether’s Theorem, and Extremal Curves 113
§3. The Enriques–Babbage Theorem and Petri’s Analysis of the Canonical Ideal 123
 Bibliographical Notes 135
 Exercises 136
 A. Symmetric Products of \(\mathbb{P}^1 \) 136
 B. Refinements of Clifford’s Theorem 137
 C. Complete Intersections 138
 D. Projective Normality (I) 140
 E. Castelnuovo’s Bound on \(k \)-Normality 141
 F. Intersections of Quadrics 142
 G. Space Curves of Maximum Genus 143
 H. G. Gherardelli’s Theorem 147
 I. Extremal Curves 147
 J. Nearly Castelnuovo Curves 149
 K. Castelnuovo’s Theorem 151
 L. Secant Planes 152

CHAPTER IV
The Varieties of Special Linear Series on a Curve 153
§1. The Brill–Noether Matrix and the Variety \(\mathcal{C}_d \) 154
§2. The Universal Divisor and the Poincaré Line Bundles 164
§3. The Varieties \(\mathcal{W}_1(C) \) and \(\mathcal{G}_1(C) \) Parametrizing Special Linear Series on a Curve 176
§4. The Zariski Tangent Spaces to \(\mathcal{G}_d(C) \) and \(\mathcal{W}_d(C) \) 185
§5. First Consequences of the Infinitesimal Study of \(\mathcal{G}_d(C) \) and \(\mathcal{W}_d(C) \) 191
 Bibliographical Notes 195
 Exercises 196
 A. Elementary Exercises on \(\mu_0 \) 196
 B. An Interesting Identification 197
 C. Tangent Spaces to \(\mathcal{W}_1(C) \) 197
 D. Mumford’s Theorem for \(\mathcal{G}_d^\text{\#} \)'s 198
 E. Martens–Mumford Theorem for Birational Morphisms 198
 F. Linear Series on Some Complete Intersections 199
 G. Keem’s Theorems 200

CHAPTER V
The Basic Results of the Brill–Noether Theory 203
 Bibliographical Notes 217
 Exercises 218
Contents

A. \(W_d^1(C) \) on a Curve \(C \) of Genus 6 218
B. Embeddings of Small Degree 220
C. Projective Normality (II) 221
D. The Difference Map \(\phi_d: C_d \times C_d \to J(C) \) (I) 223

CHAPTER VI
The Geometric Theory of Riemann’s Theta Function 225
§1. The Riemann Singularity Theorem 225
§2. Kempf’s Generalization of the Riemann Singularity Theorem 239
§3. The Torelli Theorem 245
§4. The Theory of Andreotti and Mayer 249
Bibliographical Notes 261
Exercises 262
A. The Difference Map \(\phi_d \) (II) 262
B. Refined Torelli Theorems 263
C. Translates of \(W_{g-1} \), Their Intersections, and the Torelli Theorem 265
D. Prill’s Problem 268
E. Another Proof of the Torelli Theorem 268
F. Curves of Genus 5 270
G. Accola’s Theorem 275
H. The Difference Map \(\phi_d \) (III) 276
I. Geometry of the Abelian Sum Map \(u \) in Low Genera 278

APPENDIX B
Theta Characteristics 281
§1. Norm Maps 281
§2. The Weil Pairing 282
§3. Theta Characteristics 287
§4. Quadratic Forms Over \(\mathbb{Z}/2 \) 292

APPENDIX C
Prym Varieties 295
Exercises 303

CHAPTER VII
The Existence and Connectedness Theorems for \(W_d^1(C) \) 304
§1. Ample Vector Bundles 304
§2. The Existence Theorem 308
§3. The Connectedness Theorem 311
§4. The Class of \(W_d^1(C) \) 316
§5. The Class of \(C_d \) 321
Bibliographical Notes 326
Exercises 326
A. The Connectedness Theorem 326
B. Analytic Cohomology of \(C_d, d \leq 2g - 2 \) 328
C. Excess Linear Series 329

CHAPTER VIII
Enumerative Geometry of Curves 330
§1. The Grothendieck–Riemann–Roch Formula 330
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§2.</td>
<td>Three Applications of the Grothendieck–Riemann–Roch Formula</td>
<td>333</td>
</tr>
<tr>
<td>§3.</td>
<td>The Secant Plane Formula: Special Cases</td>
<td>340</td>
</tr>
<tr>
<td>§4.</td>
<td>The General Secant Plane Formula</td>
<td>345</td>
</tr>
<tr>
<td>§5.</td>
<td>Diagonals in the Symmetric Product</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>Bibliographical Notes</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>364</td>
</tr>
<tr>
<td>A.</td>
<td>Secant Planes to Canonical Curves</td>
<td>364</td>
</tr>
<tr>
<td>B.</td>
<td>Weierstrass Pairs</td>
<td>365</td>
</tr>
<tr>
<td>C.</td>
<td>Miscellany</td>
<td>366</td>
</tr>
<tr>
<td>D.</td>
<td>Push–Pull Formulas for Symmetric Products</td>
<td>367</td>
</tr>
<tr>
<td>E.</td>
<td>Reducibility of $W_{g-1} \cap (W_{g-1} + u)$ (II)</td>
<td>370</td>
</tr>
<tr>
<td>F.</td>
<td>Every Curve Has a Base-Point-Free g^i_{g-1}</td>
<td>372</td>
</tr>
</tbody>
</table>

Bibliography 375

Index 383
Guide for the Reader

This book is not an introduction to the theory of algebraic curves. Rather, it addresses itself to those who have mastered the basics of curve theory and wish to venture beyond them into more recently explored ground. However, we felt that it would be useful to provide the reader with a condensed account of elementary curve theory that would serve the dual purpose of establishing our viewpoint and notation, and furnish a handy reference for those results which are more frequently used in the main body of our work. This is done in the first chapter; quite naturally, few proofs are given in full or even sketched. One notable exception is provided by the theorem of Riemann, describing the theta divisor of the Jacobian of a curve of genus g as a translate of the image under the Abel–Jacobi map of the $(g - 1)$-fold symmetric product of the curve.

The reader is assumed to have a working knowledge of basic algebraic geometry such as is given, for example, in the first chapter of Hartshorne’s book *Algebraic Geometry*. Occasionally, however, we have been compelled to make use of relatively more advanced results, such as the theory of base change or the Grothendieck–Riemann–Roch theorem. Our policy, in this situation, has been to give complete statements and adequate references to the existing literature when the results are first used. The main exception to this rule is provided by Chapter II, which contains a down-to-earth and utilitarian presentation, with complete proofs, of the first and second fundamental theorems of invariant theory for the general linear group, the local structure of determinantal varieties, and their global enumerative properties such as Porteous’ formula. The main reason for this exception is, of course, that the varieties of special divisors, which form one of the main objects of study in this book, have a natural determinantal structure and many of their properties are essentially direct consequences of general facts about determinant varieties. We also felt that most readers would prefer a unified account of the results rather than a sequence of references to scattered sources in the literature.

The first two chapters are thus of a preliminary nature, and most readers will probably want to use them primarily for reference purposes. The main theme of the book, that is, the study of special divisors and the extrinsic geometry of curves, is introduced in Chapter III. Here will be found, beside
elementary facts such as Clifford’s theorem (which are discussed here and not in Chapter I simply because they are close in nature to some of the results that will be encountered in later chapters), Castelnuovo’s description of extremal curves, Noether’s theorem, and the theorems of Enriques–Babbage and Petri on the canonical ideal.

Chapter IV is of a foundational nature. In it the varieties of special divisors and linear series on a fixed curve—the main characters of this book—are defined, and the functors they represent are identified. This is where the results of Chapter II are first applied in a systematic way. Although containing no major results of independent interest, except for Martens’ improvement of Clifford’s theorem and its subsequent refinement by Mumford, this chapter is, in a sense, the cornerstone on which most of the later chapters rest.

In Chapter V the main theorems of Brill–Noether theory are stated and illustrated by means of examples drawn from low-genus cases. In fact most of the theorems are proved by ad hoc arguments, for genus up to six.

Chapter VI is probably the most geometric in nature and collects many of the central results about the geometry of the theta divisor of a Jacobian. The main topics touched upon are Riemann’s singularity theorem and its generalization by Kempf, Andreotti’s proof of the Torelli theorem for curves, and Andreotti and Mayer’s approach to the Schottky problem via the heat equation for the theta function.

Chapter VII contains the proofs of some of the results stated in Chapter V, notably those of the existence and connectedness theorems, and of the enumerative formulas for the classes of the varieties of special linear series and divisors. The enumerative geometry of these varieties, and related ones, is further investigated in the eighth and final chapter of this volume.

The second volume will contain an exposition of the fundamentals of deformation theory and of the main properties of the moduli space of curves, the proof of the remaining results of Brill–Noether theory, a presentation of the basic properties of the varieties of special linear series on a moving curve with special attention to series of dimension one and two (that is, to Hurwitz spaces and varieties of plane curves), and a proof of the theorem that the moduli space of curves of sufficiently high genus is of general type.
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ</td>
<td>1</td>
</tr>
<tr>
<td>$p_a(C)$</td>
<td>1</td>
</tr>
<tr>
<td>$g(C)$</td>
<td>1</td>
</tr>
<tr>
<td>$h^i(V, \mathcal{F})$</td>
<td>1</td>
</tr>
<tr>
<td>mult$_p(D)$</td>
<td>2</td>
</tr>
<tr>
<td>deg(D)</td>
<td>2</td>
</tr>
<tr>
<td>Div(C)</td>
<td>2</td>
</tr>
<tr>
<td>μ_p</td>
<td>2</td>
</tr>
<tr>
<td>(ϕ)</td>
<td>2</td>
</tr>
<tr>
<td>Res$_p$</td>
<td>2</td>
</tr>
<tr>
<td>$\mathcal{L}(D)$</td>
<td>3</td>
</tr>
<tr>
<td>$D \geq 0$</td>
<td>3</td>
</tr>
<tr>
<td>$D \sim 0$</td>
<td>4</td>
</tr>
<tr>
<td>$</td>
<td>D</td>
</tr>
<tr>
<td>g_d</td>
<td>4</td>
</tr>
<tr>
<td>ϕ</td>
<td>5</td>
</tr>
<tr>
<td>ϕ_L</td>
<td>6</td>
</tr>
<tr>
<td>$\phi_{[D]}$</td>
<td>6</td>
</tr>
<tr>
<td>K_C</td>
<td>7</td>
</tr>
<tr>
<td>Θ_C</td>
<td>7</td>
</tr>
<tr>
<td>$l(D)$</td>
<td>7</td>
</tr>
<tr>
<td>$i(D)$</td>
<td>7</td>
</tr>
<tr>
<td>$r(D)$</td>
<td>7</td>
</tr>
<tr>
<td>$f^*(D)$</td>
<td>8</td>
</tr>
<tr>
<td>$\phi(D)$</td>
<td>12</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
</tr>
<tr>
<td>p_1, \ldots, p_d</td>
<td>12</td>
</tr>
<tr>
<td>$J(C)$</td>
<td>17</td>
</tr>
<tr>
<td>u</td>
<td>17, 18</td>
</tr>
<tr>
<td>Div$^d(C)$</td>
<td>18</td>
</tr>
<tr>
<td>C_d</td>
<td>18</td>
</tr>
<tr>
<td>Pic(C)</td>
<td>18</td>
</tr>
<tr>
<td>\mathcal{H}_g</td>
<td>22</td>
</tr>
<tr>
<td>\mathcal{A}_g</td>
<td>22</td>
</tr>
<tr>
<td>Γ_g</td>
<td>22</td>
</tr>
<tr>
<td>θ</td>
<td>23</td>
</tr>
<tr>
<td>Θ</td>
<td>23</td>
</tr>
<tr>
<td>w_d</td>
<td>25</td>
</tr>
<tr>
<td>c_d</td>
<td>25</td>
</tr>
<tr>
<td>θ</td>
<td>25</td>
</tr>
<tr>
<td>κ</td>
<td>27</td>
</tr>
<tr>
<td>$j(C)$</td>
<td>28</td>
</tr>
<tr>
<td>\mathcal{M}_g</td>
<td>28</td>
</tr>
<tr>
<td>Δ_l</td>
<td>29</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>29</td>
</tr>
<tr>
<td>$\phi^{(k)}$</td>
<td>37</td>
</tr>
<tr>
<td>$\mathcal{M}(C)$</td>
<td>41</td>
</tr>
<tr>
<td>$T_p(Y)$</td>
<td>61</td>
</tr>
<tr>
<td>$\mathcal{I}_p(X)$</td>
<td>61</td>
</tr>
<tr>
<td>$\mathbb{P}\mathcal{I}_p(X)$</td>
<td>62</td>
</tr>
<tr>
<td>$X_k(\phi)$</td>
<td>83</td>
</tr>
<tr>
<td>$-F$</td>
<td>85</td>
</tr>
<tr>
<td>$E - F$</td>
<td>85</td>
</tr>
<tr>
<td>$\Delta_{p,q}(a)$</td>
<td>86</td>
</tr>
<tr>
<td>μ_0</td>
<td>108, 159</td>
</tr>
<tr>
<td>$\pi(d, r)$</td>
<td>116</td>
</tr>
<tr>
<td>C_d</td>
<td>153, 177</td>
</tr>
<tr>
<td>$W_d^1(C)$</td>
<td>153, 177</td>
</tr>
<tr>
<td>$G_d(C)$</td>
<td>153</td>
</tr>
<tr>
<td>ρ</td>
<td>159</td>
</tr>
<tr>
<td>$\mu_{0,w}$</td>
<td>187</td>
</tr>
<tr>
<td>ϕ_d</td>
<td>223</td>
</tr>
<tr>
<td>V_d</td>
<td>223</td>
</tr>
<tr>
<td>\mathcal{J}_g</td>
<td>249</td>
</tr>
<tr>
<td>Nm</td>
<td>281</td>
</tr>
<tr>
<td>$\mathbb{P}E$</td>
<td>304</td>
</tr>
<tr>
<td>$\mathcal{O}_{\mathbb{P}E}$(1)</td>
<td>305</td>
</tr>
<tr>
<td>$K(X)$</td>
<td>331</td>
</tr>
</tbody>
</table>
List of Symbols

Note. Throughout this book, if V is a vector space (resp. if E is a vector bundle) we will denote by $\mathbb{P}V$ (resp. $\mathbb{P}E$) the space of one-dimensional subspaces of V (resp. of the fibers of E); thus

$$\mathbb{P}V = \text{Proj}(\bigoplus \text{Sym}^n V^*).$$

More generally, if C is a cone, $\mathbb{P}C$ will stand for its projectivization. Similarly, by $G(k, V)$ (resp. $G(k, E)$) we will mean the space of k-dimensional subspaces of V (resp. of the fibers of E).
Chapter I

Preliminaries

This book will be concerned with geometric properties of algebraic curves. Our central problem is to study the various projective manifestations of a given abstract curve. In this chapter we shall collect various definitions, notations, and background facts that are required for our work.

§1. Divisors and Line Bundles on Curves

By curve we shall mean a complete reduced algebraic curve over \(\mathbb{C} \); it may be singular or reducible. When speaking of a smooth curve, we shall always implicitly assume it to be irreducible. Sometimes, when no confusion is possible we shall drop the adjective “smooth”; this will only be done in sections where exclusively smooth curves are being considered.

We shall assume known the basic properties of sheaves and line bundles on algebraic varieties and analytic spaces, and shall make the usual identification of invertible sheaves with line bundles and of locally free sheaves with vector bundles. When tensoring with line bundles we shall often drop the tensor product symbol. If \(\mathcal{F} \) is a sheaf of \(\mathbb{C} \)-vector spaces over a topological space \(V \), we shall set, as customary

\[
h^i(V, \mathcal{F}) = \dim_{\mathbb{C}} H^i(V, \mathcal{F}),
\]

\[
\chi(\mathcal{F}) = \sum (-1)^i h^i(V, \mathcal{F}).
\]

The basic invariant of a curve \(C \) is its genus. To be more precise, we shall use the words arithmetic genus of \(C \) to denote the integer

\[
p_a(C) = 1 - \chi(\mathcal{O}_C).
\]

Of course, when \(C \) is connected, the arithmetic genus of \(C \) equals \(h^1(C, \mathcal{O}_C) \). On the other hand, when \(C \) is irreducible, we shall denote by \(g(C) \) its geometric genus, which is defined to be the (arithmetic) genus of its normalization. In this book we shall usually talk about the genus of a curve without further specification; hopefully, it will always be clear from the context which genus we are referring to. A very basic but non-elementary fact, which can be proved
via potential theory, is that the genus of a smooth curve \(C \) is one-half of the first Betti number of the underlying topological surface; in symbols

\[
g(C) = \frac{1}{2} \text{rank}(H^1(C, \mathbb{Z})).
\]

Throughout this chapter we shall fix a smooth curve \(C \).

To understand the geometry of \(C \) it is essential to study its meromorphic functions; this is best done in the language of divisors and line bundles. A divisor

\[
D = \sum n_i p_i, \quad n_i \in \mathbb{Z} \quad \text{and} \quad p_i \in C,
\]

is a formal linear combination of points on \(C \). We may assume that the \(p_i \) are distinct, and then \(n_i \) is the multiplicity \(\text{mult}_{p_i}(D) \) of \(D \) at \(p_i \). The divisors form a group \(\text{Div}(C) \), and the degree homomorphism

\[
\text{deg}: \text{Div}(C) \to \mathbb{Z}
\]

is defined by

\[
\text{deg}(D) = \sum n_i.
\]

The group of divisors of degree zero is denoted by \(\text{Div}^0(C) \).

If \(\phi \) is a meromorphic function (resp., a meromorphic differential) on \(C \), then in terms of a local holomorphic coordinate \(z \) on \(C \),

\[
\phi = f(z) \quad \text{(resp., } \phi = f(z) \, dz),
\]

where \(f(z) \) is a meromorphic function. If the point \(p \in C \) corresponds to the origin in the \(z \)-plane, and if we write

\[
f(z) = z^\mu g(z), \quad g(0) \neq 0, \infty,
\]

then the order \(\mu_p(\phi) = \mu \) of \(\phi \) at \(p \) is well defined. The divisor \((\phi) \) associated to \(\phi \) is defined to be

\[
(\phi) = \sum_{p \in C} \mu_p(\phi)p.
\]

In case \(\phi \) is a meromorphic differential, its residue at \(p \) is

\[
\text{Res}_p(\phi) = \frac{1}{2\pi \sqrt{-1}} \oint_\gamma \phi,
\]
where \(\gamma \) is any curve homotopic to \(\{ |z| = \varepsilon \} \) in a small punctured neighborhood of \(p \). A simple but basic fact is the residue theorem

\[
\sum_{p \in C} \text{Res}_p(\phi) = 0.
\]

This is a straightforward consequence of Stokes' theorem. In fact, suppose \(\phi \) has poles at \(p_1, \ldots, p_d \) and let \(U_i \) be a small parametric disc around \(p_i \) such that \(U_i \cap U_j = \emptyset \) if \(i \neq j \). Setting \(C^* = C - \bigcup_i U_i \), we obtain

\[
\sum_i \text{Res}_{p_i}(\phi) = \sum_i \frac{1}{2\pi i} \int_{\partial U_i} \phi = - \frac{1}{2\pi i} \int_{C^*} d\phi = 0.
\]

When applied to the logarithmic differential \(\phi = df/f \) of a meromorphic function \(f \), the residue theorem gives

\[
\deg((f)) = 0.
\]

If we view \(f \) as a holomorphic map

\[
f: C \to \mathbb{P}^1,
\]

this expresses the well-known topological fact that the degree of the divisor \(f^{-1}(q) \) is independent of \(q \in \mathbb{P}^1 \), and agrees with the degree (also called sheet number) of \(f \).

A divisor \(D \) is said to be effective, and we write \(D \geq 0 \), if all points of \(D \) appear with non-negative multiplicity. We shall write \(D \geq D' \) to mean \(D - D' \) is effective.

To any divisor \(D \) one can attach the sheaf \(\mathcal{O}(D) \) defined by the prescription

\[
\Gamma(U, \mathcal{O}(D)) = \left\{ \text{meromorphic functions on } U \middle| \text{that satisfy } (f) + D|_U \geq 0. \right\}
\]

Actually, \(\mathcal{O}(D) \) turns out to be a line bundle, since it is generated, over any sufficiently small open set, by \(1/g \), where \(g \) is a local defining equation for \(D \). It is customary to write

\[
\mathcal{L}(D) = H^0(C, \mathcal{O}(D)).
\]

Conversely, given a line bundle \(L \) and a non-zero meromorphic section \(s \), we may define, in complete analogy with the case of meromorphic functions,
the divisor \(D = (s) \) of \(s \), and division by \(s \) yields an isomorphism

\[
L \cong \mathcal{O}(D).
\]

It will be an easy consequence of the Riemann–Roch theorem that any line bundle on \(C \) has a non-zero meromorphic section, thus showing that every line bundle on \(C \) is of the form \(\mathcal{O}(D) \), up to isomorphism.

The following formal rules are clear from the definitions:

\[
\mathcal{O}(D) \otimes \mathcal{O}(D') \cong \mathcal{O}(D + D'),
\]

\[
\mathcal{O}(D)^{-1} \cong \mathcal{O}(-D).
\]

A basic notion in the study of divisors is the one of linear equivalence. A divisor \(D \) is linearly equivalent to zero, and we write \(D \sim 0 \), if

\[
D = (f)
\]

for some meromorphic function \(f \). Two divisors \(D \) and \(D' \) are linearly equivalent if

\[
D - D' \sim 0,
\]

and the linear equivalence class of a divisor \(D \) is called the divisor class of \(D \) and denoted by \([D]\). Clearly, two divisors \(D \) and \(D' \) are linearly equivalent if and only if there is an isomorphism between \(\mathcal{O}(D) \) and \(\mathcal{O}(D') \).

To each projective manifestation of \(C \) there is attached a linear series of divisors on the curve itself. First of all, given a divisor \(D \), the complete linear series (or system) \(|D| \) is the set of effective divisors linearly equivalent to \(D \). Given two meromorphic functions \(f \) and \(g \), notice that \((f) = (g) \) if and only if there is a non-zero constant \(\lambda \) such that \(f = \lambda g \). We then have an identification

\[
|D| = \mathbb{P} \mathcal{L}(D)
\]

obtained by associating to each non-zero \(f \in \mathcal{L}(D) \) the divisor \((f) + D \). A complete linear series is therefore a projective space. More generally, any linear subspace of a complete linear series is called a linear series (or system). A linear series \(\mathcal{D} = \mathbb{P} V \), where \(V \) is a vector subspace of \(\mathcal{L}(D) \), is said to be a \(g^r_d \) if

\[
\deg(D) = d; \quad \dim(V) = r + 1.
\]

A \(g^1_d \) is called a pencil, a \(g^2_d \) a net, and a \(g^3_d \) a web. By a base point of a linear series \(\mathcal{D} \) we mean a point common to all divisors of \(\mathcal{D} \). If there are none we say