Acid Gas Injection
and Carbon Dioxide
Sequestration
Scrivener Publishing
3 Winter Street, Suite 3
Salem, MA 01970

Scrivener Publishing Collections Editors

James E. R. Couper Richard Erdlac
Rafiq Islam Pradip Khaladkar
Vitthal Kulkarni Norman Lieberman
Peter Martin W. Kent Muhlbauer
Andrew Y. C. Nee S. A. Sherif
James G. Speight

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
This book is dedicated to Wu Ying, my loving wife. She is the love of my life and a constant source of inspiration.
This Page Intentionally Left Blank
Contents

Preface xv
Acknowledgement xvii

Chapter 1 Introduction 1
1.1 Acid Gas 2
 1.1.1 Hydrogen Sulfide 3
 1.1.2 Carbon Dioxide 4
1.2 Anthropogenic CO₂ 5
1.3 Flue Gas 5
 1.3.1 Sulfur Oxides 7
 1.3.2 Nitrogen Oxides 8
1.4 Standard Volumes 8
 1.4.1 Gas Volumes 8
 1.4.2 Liquid Volumes 9
1.5 Sulfur Equivalent 9
1.6 Sweetening Natural Gas 11
 1.6.1 Combustion Process Gas 12
 1.6.1.1 Post-Combustion 13
 1.6.1.2 Pre-Combustion 14
1.7 Acid Gas Injection 14
1.8 Who Uses Acid Gas Injection? 16
 1.8.1 Western Canada 16
 1.8.2 United States 17
 1.8.3 Other Locations 17
 1.8.4 CO₂ Flooding 18
1.9 In Summary 18

References 18
Appendix 1A Oxides of Nitrogen 20
Appendix 1B Oxides of Sulfur 22
Chapter 2 Hydrogen Sulfide and Carbon Dioxide 23
 2.1 Properties of Carbon Dioxide 25
 2.2 Properties of Hydrogen Sulfide 27
 2.3 Estimation Techniques for Physical Properties 31
 2.3.1 Thermodynamic Properties 31
 2.3.1.1 Ideal Gas 31
 2.3.1.2 Real Gas 33
 2.3.2 Saturated Liquid and Vapor Densities 36
 2.3.2.1 Liquids 36
 2.3.2.2 Corresponding States 37
 2.3.3 Thermodynamic Properties 39
 2.3.4 Transport Properties 40
 2.3.4.1 Low Pressure Gas 40
 2.3.4.2 Gases Under Pressure 41
 2.3.4.3 Liquids 42
 2.3.5 Viscosity Charts 43
 2.4 Properties of Acid Gas Mixtures 44
 2.4.1 Thermodynamic Properties 44
 2.4.1.1 Corresponding States 45
 2.4.2 Transport Properties 47
 2.4.3 Word of Caution 48
 2.5 Effect of Hydrocarbons 50
 2.5.1 Density 50
 2.5.2 Viscosity 51
 2.6 In Summary 51

References 51
Appendix 2A Transport Properties of Pure Hydrogen Sulfide 53
 2A.1 Viscosity 53
 2A.1.1 Liquid 53
 2A.1.2 Vapor 54
 2A.2 Thermal Conductivity 55

References 57
Appendix 2B Viscosity of Acid Gas Mixtures 59
 2B.1.1 Correcting for High Pressure 59
 2B.1.2 Carbon Dioxide 59
 2B.1.3 Generalization 61
Chapter 3 Non-Aqueous Phase Equilibrium

3.1 Overview

3.2 Pressure-Temperature Diagrams
 3.2.1 Pure Components
 3.2.2 Mixtures
 3.2.3 Binary Critical Points
 3.2.4 Effect of Hydrocarbons
 3.2.4.1 Methane
 3.2.4.2 Ethane and Propane
 3.2.4.3 Butane and Heavier
 3.2.4.4 In Summary

3.3 Calculation of Phase Equilibrium
 3.3.1 Equations of State
 3.3.2 K-Factor Charts

3.4 In Summary

References

Appendix 3A Some Additional Phase Equilibrium Calculations
 3A.1.1 Hydrogen Sulfide + Hydrocarbons
 3A.1.2 Carbon Dioxide + Hydrocarbons
 3A.1.3 Multicomponent Mixtures

References

Appendix 3B Accuracy of Equations of State for VLE in Acid Gas Mixtures

References

Chapter 4 Fluid Phase Equilibria Involving Water

4.1 Water Content of Hydrocarbon Gas
4.2 Water Content of Acid Gas
 4.2.1 Carbon Dioxide
 4.2.2 Hydrogen Sulfide
4.2.3 Practical Representation 106
 4.2.3.1 In Summary 108

4.3 Estimation Techniques 108
 4.3.1 Simple Methods 109
 4.3.1.1 Ideal Model 109
 4.3.1.2 McKetta-Wehe Chart 109
 4.3.1.3 Maddox Correction 110
 4.3.1.4 Wichert Correction 110
 4.3.1.5 Alami et al. 111
 4.3.2 Advanced Methods 111
 4.3.2.1 AQUAlibrium 111
 4.3.2.2 Other Software 112

4.4 Acid Gas Solubility 113
 4.4.1 Henry’s Law 113
 4.4.2 Solubility in Brine 115
 4.4.2.1 Carbon Dioxide in NaCl 116
 4.4.2.2 Hydrogen Sulfide in NaCl 116
 4.4.2.3 Mixtures of Gases 119
 4.4.2.4 Effect of pH 119

4.5 In Summary 119

References 120

Appendix 4A Compilation of the Experimental Data for the Water Content of Acid Gas 122

References 124

Appendix 4B Comments on the Work of Selleck et al. 127

Appendix 4C Density of Brine (NaCl) Solutions 129

Chapter 5 Hydrates 131
 5.1 Introduction to Hydrates 131
 5.2 Hydrates of Acid Gases 132
 5.3 Estimation of Hydrate Forming Conditions 135
 5.3.1Shortcut Methods 135
 5.3.2 Rigorous Methods 136
 5.4 Mitigation of Hydrate Formation 136
 5.4.1 Inhibition with Methanol 136
 5.4.2 Water-Reduced Cases 138
 5.4.2.1 Carbon Dioxide 139
 5.4.2.2 Dehydration 140
Chapter 6 Compression

6.1 Overview 145
6.2 Theoretical Considerations 148
6.3 Compressor Design and Operation 148
6.4 Design Calculations 149
 6.4.1 Compression Ratio 150
 6.4.2 Ideal Gas 151
 6.4.3 Efficiency 157
 6.4.4 Ratio of the Heat Capacities 158
6.5 Interstage Coolers 159
 6.5.1 Design 160
 6.5.2 Pressure Drop 164
 6.5.3 Phase Equilibrium 164
6.6 Compression and Water Knockout 167
 6.6.1 Additional Cooling 171
6.7 Materials of construction 172
6.8 Advanced design 172
 6.8.1 Cascade 172
 6.8.2 CO₂ Slip 173
6.9 Case studies 174
 6.9.1 Wayne-Rosedale 174
 6.9.2 Acheson 175
 6.9.3 West Pembina 175
6.10 In Summary 175

References 176

Appendix 6A Additional Calculations 177
Chapter 7 Dehydration of Acid Gas 183

7.1 Glycol Dehydration 184
 7.1.1 Acid Gas Solubility 185
 7.1.2 Desiccant 187

7.2 Molecular Sieves 189
 7.2.1 Acid Gas Adsorption 191

7.3 Refrigeration 192
 7.3.1 Selection of Inhibitor 193

7.4 Case Studies 194
 7.4.1 CO₂ Dehydration 194
 7.4.2 Acid Gas Dehydration 195
 7.4.2.1 Wayne-Rosedale 195
 7.4.2.2 Acheson 195

7.5 In Summary 196

References 196

Chapter 8 Pipeline 199

8.1 Pressure Drop 199
 8.1.1 Single Phase Flow 199
 8.1.1.1 Friction Factor 202
 8.1.1.2 Additional Comments 204
 8.1.2 Two-Phase Flow 205
 8.1.3 Transitional Flow 205

8.2 Temperature Loss 206
 8.2.1 Carroll's Method 206

8.3 Guidelines 207

8.4 Metering 208

8.5 Other Considerations 209

8.6 In Summary 210

References 210

Appendix 8A Sample Pipeline Temperature Loss Calculation 211

8A.1 AQUAlibrium 3.0 212
 8A.1.1 Acid Gas Properties 212
 8A.1.1.1 Conditions 212
 8A.1.1.2 Component Fractions 212
 8A.1.1.3 Phase properties 212
 8A.1.1.4 Warnings 212
Chapter 9 Injection Profiles

9.1 Calculation of Injection Profiles
9.1.1 Gases
9.1.1.1 Ideal Gas
9.1.1.2 Real Gas
9.1.2 Liquids
9.1.3 Supercritical Fluids
9.1.4 Friction
9.1.5 AGIProfile
9.2 Effect of Hydrocarbons
9.3 Case Studies
9.3.1 Chevron Injection Wells
9.3.1.1 West Pembina
9.3.1.2 Acheson
9.3.2 Anderson Puskwaskau
9.4 Other Software
9.5 In Summary

References
Appendix 9A Additional Examples

Chapter 10 Selection of Disposal Zone

10.1 Containment
10.1.1 Reservoir Capacity
10.1.2 Caprock
10.1.3 Other Wells
10.2 Injectivity
10.2.1 Liquid Phase
10.2.2 Gas Injection
10.2.3 Fracturing
10.2.4 Horizontal Wells
10.3 Interactions With Acid Gas
10.4 In Summary

References

Chapter 11 Health, Safety and The Environment

11.1 Hydrogen Sulfide
11.1.1 Physiological Properties
11.1.2 Regulations
11.1.3 Other Considerations
Chapter 11: Carbon Dioxide

11.2 Carbon Dioxide
 11.2.1 Physiological Properties 249
 11.2.2 Climate Change 250
 11.2.3 Other Considerations 250

11.3 Emergency Planning 250
 11.3.1 Accidental Releases 250
 11.3.2 Planning Zones 251
 11.3.3 Other Considerations 255
 11.3.3.1 Sour vs. Acid Gas 255
 11.3.3.2 Wind 256
 11.3.3.3 Carbon Dioxide 256
 11.3.3.4 Sensitive Areas 256

Chapter 12: Capital Costs

12.1 Compression 257
 12.1.1 Reciprocating Compressor 258
 12.1.2 Centrifugal 259

12.2 Pipeline 259

12.3 Wells 260

12.4 In Summary 261

Chapter 13: Additional Topics

13.1 Rules of Thumb 263
 13.1.1 Physical Properties 263
 13.1.2 Water Content 264
 13.1.3 Hydrates 264
 13.1.4 Compression 264
 13.1.5 Pipelines 265
 13.1.6 Reservoir 266

13.2 Graphical Summary 266
 13.2.1 Pressure-Temperature 266
 13.2.2 Water Content 268
 13.2.3 Operation 269
 13.2.4 Summary 270

13.3 The Three Types of Gas 270
 13.3.1 Example Gases 270

Index 275
Acid gas injection (AGI) has become a mature technology for disposing of acid gas, a mixture of CO$_2$ and H$_2$S. AGI is particularly useful for small producers who have few options for dealing with the H$_2$S. Larger producers, however, have seen the value in AGI as well and the industry has discovered that AGI is an environmentally friendly solution to a difficult problem.

This book presents the art, the science, and the engineering aspects of AGI, and to present it in a manner that is accessible to the average engineer. It begins with a discussion of the basic data and models for designing an injection scheme. In particular it is important that those working in the field have a good understanding of the phase equilibria involved. Most of the operational problems are related to the formation of an unwanted phase. Admittedly, some of these concepts are a little complicated, and it is a challenge to present them in a form that is comprehensible to a wide audience.

Next the engineering aspects are presented. These include the design of the compressor and pipeline and in particular what makes them different from standard designs. Finally, some of the subsurface aspects are reviewed. Admittedly, the focus of this book is the surface aspects of AGI, but the subsurface aspects cannot be overlooked, even by the process engineer.

Hopefully, those involved in the emerging field of CO$_2$ sequestration will note the similarities and take the information presented here and apply it to their projects. Lessons learned in AGI can be exported to the technology of carbon sequestration.
This Page Intentionally Left Blank
Acknowledgements

There are many people to thank when one writes a book. The first, and certainly the most important, is my employer Gas Liquids Engineering, and in particular the company principals Doug MacKenzie and Jim Maddocks but also my colleague Peter Griffin. They provided me the opportunity to present the course and much of the time to write the manuscript.

In addition, through my job at Gas Liquids Engineering, I have had the chance to work on many acid gas injection projects throughout the world. Some of these were just studies that have not yet come to fruition, but others have been operating for many years. Much of what is presented in this book has come from lessons learned from working on those projects.

Alan Mather has been my long time friend and mentor. He is an important source of information, often from obscure sources. Plus his lab is the source of much of the useful information in this field. The research studies of his group are vital to the advancement of many fields in the gas processing.

This book is based on a course on acid gas injection that I have presented throughout the world. Feedback from the attendees over the years has greatly improved the quality and content of both the course and this book. The acid gas injection course has also been presented in Chinese and Polish. I have received excellent feedback from Eugene Grynia, my Polish translator, and Ying Wu, my Chinese translator.
This Page Intentionally Left Blank